黑料视频

Search within:

Trevor Bihl

Bihl headshot
Stocker Visiting Professor in Artificial Intelligence and Cyber Security
Stocker Center 321

Before joining 黑料视频 as the Stocker Visiting Professor of AI, Trevor Bihl served as a senior research engineer and program manager at the Air Force Research Laboratory (AFRL), Sensors Directorate (2016鈥2025), where he led intramural and extramural research across TRLs 1-9 (foundational to applied) in artificial intelligence, autonomous systems, machine learning, and signal processing.  Prior to AFRL, he spent a decade as a research contractor. He has also served as an adjunct professor at Shawnee State University, Wright State University's Boonshoft School of Medicine, and Marshall University.  

He is a senior member of the Institute of Electrical and Electronics Engineers (IEEE), and a senior member, and former board member, of the Institute for Operations Research and the Management Sciences (INFORMS).

Research Interests: Analogical learning; artificial intelligence; autonomous systems; biostatistics; computer vision; control systems; cyber Systems; cyber physical systems; cyber security; data mining; electricity theft; machine learning; neural networks; neuromorphic systems; operations research; planning, scheduling, and routing; optimization; power systems; reinforcement learning; remote sensing;  spiking neural networks; statistics; system identification; transfer learning;

All Degrees Earned: Ph.D., Electrical Engineering, Air Force Institute of Technology, 2015; M.S., Electrical Engineering, Ohio Univeristy; B.S., Electrical Engineering, 黑料视频

Journal Articles (37)

  1. Combs, K., Goble, I., Howlett, S., Adams, Y., and Bihl, T.  (2025) "Evaluating the Trade-off Between Analogical Reasoning Ability and Efficiency in Large Language Models" IEEE Transactions on Cognitive and Developmental Systems
  2. Vicente-Sola, A., Manna, D.L., Kirkland, P., Di Caterina, G. and Bihl, T.J., (2025) 鈥淪piking Neural Networks for event-based action recognition: A new task to understand their advantage,鈥 Neurocomputing
  3. Bihl, T. J., and Sands, T. 鈥淒ynamic System Modeling for Flexible Structures,鈥 Online Journal of Robotics and Automation Technology
  4. Utimula, K., Hayaschi, K-T., Bihl, T. J., Hongo, K., and Maezono, R., 鈥淯sing reinforcement learning to autonomously identify sources of error for agents in group missions,鈥 Frontiers in Control Engineering
  5. Baietto, A., Stewart, C., and Bihl, T.J., (2024) 鈥淒ataset assembly for training Spiking Neural Networks,鈥 Neurocomputing
  6. Miller, N., Drumm, G., Champagne, L., Cox, B., and Bihl, T. J. 鈥淪trategies to Alleviate Flickering AI: Bayesian and Smoothing Methods for Deep Learning Classification in Video" Journal of Defense Analytics and Logistics
  7. Combs, K., Moyer, A., and Bihl, T. J. (2024) 鈥淯ncertainty in Visual Generative AI,鈥 Algorithms 17(4)
  8. Combs, K., Bihl, T. J., and Ganapathy, S., (2024) 鈥淯tilization of generative AI for the characterization and identification of visual unknowns,鈥 Natural Language Processing Journal
  9. Yue, Y., Baltes, M., Abuhajar, N., Sun, T., Karanth, A., Smith, C., Bihl, T.J., and Liu, J., (2023) 鈥淪piking Neural Networks fine-tuning for brain image segmentation,鈥 Frontiers in Neuroscience-Neuromorphic Engineering, 17
  10. Combs, K., Bihl, T. J., (2022) 鈥淨uestion Optimization: Building Quiz Bowl Tournament Sets,鈥 International Journal of Applied Management Science (IJAMS)
  11. Bayless, S., Bihl, T. J., Rohan, C., Travers, J., Whitney, E., (2023) "Inappropriate Testing of Streptococcal Pharyngitis in Children Less than Three Years Old: Application of Statistical Process Control," Clinical Pediatrics, 62(4), pp. 309-315
  12. McCloskey, B.J., Cox, B.A., Champagne, L. and Bihl, T.J., (2023) 鈥淏enefits of using blended generative adversarial network images to augment classification model training data sets,鈥 The Journal of Defense Modeling and Simulation
  13. Webb, T., Fu, S., Bihl, T., Holyoak, K.J. and Lu, H. (2023). 鈥淶ero-shot visual reasoning through probabilistic analogical mapping,鈥 Nature Communications, 14(1)
  14. Combs, K., Lu, H. and Bihl, T.J., (2023) 鈥淭ransfer Learning and Analogical Inference: A Critical Comparison of Algorithms, Methods, and Applications,鈥 Algorithms, 16(3), p.146.
  15. Baietto, A., Boubin, J., Farr, P., Bihl, T.J., Jones, A.M. and Stewart, C., 2022. Lean neural networks for autonomous radar waveform design. Sensors, 22(4), p.1317
  16. Yerrapragada, S., Sawant, S., Chen, S., Bihl, T., Wang, J., Bihl, J., (2022) 鈥淭he protective effects of miR-210 modified endothelial progenitor cells released exosomes in hypoxia/reoxygenation injured neurons,鈥 Experimental Neurology, vol. 358
  17. Vicente Sola, A., Manna, D. L., Kirkland, P., Di Caterina, G., Bihl, T. J., (2022) 鈥淜eys to accurate feature extraction using residual spiking neural networks,鈥 Neuromorphic Computing and Engineering, vol. 2 044001
  18. Bihl, J., Sawant, H., Nguyen, D., Bihl, T. and Iwuchukwu, I., (2022) 鈥淭he profile of extracellular vesicles in intracerebral hemorrhage patients,鈥 Journal of Cerebral Blood Flow and Metabolism, 42(1), pp. 294-295
  19. Sawant, H., Bihl, T., Nguyen, D., Iwuchukwu, I. and Bihl, J., (2022) 鈥淭he profile of inflammatory extracellular vesicles in intracerebral hemorrhage patients,鈥 Frontiers in Stroke, 1, p.988081.
  20. Manna, D.L., Vicente-Sola, A., Kirkland, P., Bihl, T.J. and Di Caterina, G., (2022) 鈥淪imple and complex spiking neurons: Perspectives and analysis in a simple STDP scenario,鈥 Neuromorphic Computing and Engineering, 2(4), p.044009.
  21. Bill, J., Champagne, L., Cox, B. and Bihl, T., (2021) 鈥淢eta-Heuristic Optimization Methods for Quaternion-Valued Neural Networks,鈥 Mathematics, 9(9), p.938.
  22. Schmeusser B, Borchers, C., Travers, J.B., Borchers, S., Trevino, J., Rubin, M., Donnelly, H., Kellawan, K., Carpenter, L., Bahl, S., Rohan, C., Mueenich, E., Guenthner, S., Hahn, H., Rkein, A., Darst, M., Mousdicas, N., Cates, E., Sunar, U., Bihl, T.J., (2020) Inter-and Intra-physician variation in quantifying actinic keratosis skin photodamage. Journal of Clinical and Investigative Dermatology. 8(2),
  23. Bihl, T. J., Paciencia, T. J., Bauer, K. W., and Temple, M. A., (2020) 鈥淐yber-Physical Security with RF Fingerprint Classification through Distance Measure Extensions of Generalized Relevance Learning Vector Quantization,鈥 Security and Communications Networks, vol. 2020
  24. Paciencia, T. J., Bihl, T. J., and Bauer, K. W., (2019) 鈥淚mproved n-dimensional data visualization from hyper-radial values,鈥 Journal of Algorithms and Computational Technology, vol. 13
  25. Travers, J. B., Poon, C., Bihl, T. J., Borchers, C., Rohrbach, D. J., Borchers, S., Trevino, J., Rubin, M., Donnelly, H., Kellawan, K., Carpenter, L., Bahl, S., Rohan, C., Muennich, E., Guenthner, S., Hahn, H., Rkein, Al, Darst, M., Mousdicas, N., Cates, E., Sunar, U., (2019) 鈥淨uantifying skin photodamage with spatial frequency domain imaging: Statistical results,鈥 Biomedical Optics Express, vol 10, no 9, pp. 4676-83
  26. Butler, H. K., Friend, M. A., Bauer, K. W., Bihl, T. J., (2018) invited 鈥淭he Effectiveness of Using Diversity to Select Multiple Classifier Systems With Varying Classification Thresholds,鈥 Journal of Algorithms and Computational Technology, 12(3), pp.187-199
  27. Gutierrez, R. J., Bauer, K. W., Boehmke, B. C., Saie, C. M., and Bihl, T. J. (2018) invited "Cyber Anomaly Detection: Using Tabulated Vectors and Embedded Analytics for Efficient Data Mining" Journal of Algorithms and Computational Technology, 12(4) 293-310
  28. Bihl, T. J., and Bauer, K.W., (2017) 鈥淪tatistical Analysis of High-Level Features from State of the Union Addresses,鈥 International Journal of Information Systems and Social Change (IJISSC), vol. 8, no. 2, pp. 50-73
  29. Gutierrez, R. J., Boehmke, B. C., Bauer, K. W., Saie, C. M., and Bihl, T. J. 鈥渁nomalyDetection: Implementation of Augmented Network Log Anomaly Detection Procedures,鈥 R Journal, August 2017
  30. Moore, K.L., Bihl, T. J., Bauer, K. W., and Dube, T. E., (2017) 鈥淐yber Data Feature-Extraction and Artificial Neural Network Based Feature-Selection for Classifying Cyber-Traffic Threats,鈥 Journal of Defense Modeling and Simulation, vol. 13, no. 3, pp. 217-231
  31. Bihl, T. J., Bauer, K.W., and Temple, M. A., (2016) 鈥淔eature Selection for RF Fingerprinting With Multiple Discriminant Analysis and Using ZigBee Device Emissions,鈥 IEEE Transactions on Information Forensics and Security, vol. 11, no. 8, pp. 1862-1874
  32. Situ, J.X., Friend, M.A., Bauer, K.W., and Bihl, T.J., (2016) 鈥淐ontextual Features and Bayesian Belief Networks for Improved Synthetic Aperture Radar Combat Identification,鈥 Military Operations Research Journal, vol. 21, no. 1, pp. 89-106
  33. Bihl, T. J., Young, W. A., and G. R. Weckman, (2016) 鈥淒efining, Understanding and Addressing Big Data,鈥 International Journal of Business Analytics (IJBAN), vol. 3, no. 2, pp. 1-32
  34. Jablonski, J. A., Bihl, T. J., Bauer, K. W., (2015) 鈥淧rincipal Component Reconstruction Error for Hyperspectral Anomaly Detection,鈥 IEEE Geoscience and Remote Sensing Letters, vol. 12, no. 8, pp. 1725-1729 (Impact Factor: 5.43, H-Index: 138)
  35. Friesen, K. D., Bihl, T. J., Bauer, K.W., Friend, M. A., (2013) 鈥淐ontextual Anomaly Detection Cueing Methods for Hyperspectral Target Recognition,鈥 American Journal of Science and Engineering, vol. 2, no. 1, pp. 9-16
  36. Williams, J., Bihl, T., and Bauer, K., (2013) "Towards the mitigation of correlation effects in anomaly detection for hyperspectral imagery,鈥 Journal of Defense Model and Simulation, vol. 10, no. 3, pp. 263-273
  37. Ryer, D.M., Bihl, T.J., Bauer, K.W., and Rogers, S.K., (2012) 鈥淨UEST Hierarchy for Hyperspectral Face Recognition,鈥 Advances in Artificial Intelligence, vol. 2012, pp. 1-13

Books (2)

  1. Zobaa, A. and Bihl, T. J. (2019) Big Data Analytics in Future Power Systems, CRC Press, 8 chapters, 174 pages
  2. Bihl, T. J. (2017) Biostatistics Using JMP: A Practical Guide, SAS Press, 14 chapters, 356 pages

Patent Submissions (6)

  1. Bihl, T. J., Cox, C., Frimel, S., Morales-Colon, E., Tran, B., Plug and play ooda loop for airborne resource management using sensor fusion (ARMS), US 18/303,878
  2. Bihl, T. J., Boubin, J., Baietto, A., Stewart, C., and Jones, A., (2024) Method of Analyzing and Correcting a Dynamic Waveform Using Multivariate Error Loss Functions,  US 18/418,576
  3. Bihl, T. J., Boubin, J., Baietto, A., Stewart, C., and Jones, A., (2024) Method of Analyzing and Correcting a Complex Waveform by Real and Imaginary Partitioning and Recombination
  4. Combs, K. and Bihl, T. J., (2023) Method and System for the Input Recognition Through Analogical Reasoning Algorithm, US18/068,589
  5. Bihl, T. J., (2023) Methods and system for analogical learning in machine learning processes, non-provisional patent filed Dec. 2023, US18/068,925
  6. Bihl, T. J., and Cox, C., (2023) Autonomous Airborne Mission Navigation and Tasking System, US17/899,244

Confernce papers (70)

  1. Bihl, T. J., Boland, M., Turner, D., and Sarkisian, C., (2025) 鈥淭opological Data Analysis for Time Series Classification of NFL Track Data,鈥 IEEE NAECON
  2. Bihl, T. J. (2025) 鈥淎 review of gravity offloading,鈥 IEEE NAECON
  3. Simpkins, D., Scheller, C., Bihl, T. J., Witherell, J., Miller, A., 鈥淩apid Game Development with AI Demonstration,鈥 IEEE NAECON
  4. Simpkins, D., Rhodes, S., Bihl, T.J. (2025), 鈥淒eveloping a Modular Food Label Reader with Application to Vegan/Vegetarian Products,鈥 IEEE NAECONBresciani, C., Lavazza, L., Cominelli, M., Han, L., Dong, G., Gringoli, F., Kaplan, L. M., Srivastava, M. B., Bihl, T. J., Blasch, E. P., Knutson, F. J., and Cerutti, F., (2025) 鈥 Preliminary Insights into Resource-Constrained Neuro-Symbolic Causal Complex Event Processing鈥 IEEE Fusion Conferenc
  5. Bihl, T.J. and Lemming, G. (2025) 鈥淒eveloping a Framework for Biological Intelligence Modules in Autonomous Social Robots鈥 Ubiquitous Robotics 2025
  6. Bihl, T.J., Oroszi, T., Ganapathy, S., and Travers, J. (2025) 鈥淚mproving Statistics Education at Wright State University with Design Project Based Learning, Problem Solving, and Peer Review鈥 ASEE North Central Section (NCS) Annual Conference
  7. Nagura, D., Bihl, T.J., and Liu, J. (2025) 鈥淩einforcement Learning with Human Experience (RLHE) for Racing Car Game鈥 ASEE North Central Section (NCS) Annual Conference,
  8. Hoffman, A., and Bihl, T.J., (2025) 鈥淲est Virginia鈥檚 Power Systems Industry: History, Directions, and Future鈥 ASEE North Central Section (NCS) Annual Conference
  9. Sizemore, E., and Bihl, T.J., (2025) 鈥淕amification in Power System Education鈥 ASEE North Central Section (NCS) Annual Conference
  10. Stevenson, E. S., Cook. J., and Bihl, T.J. (2025) 鈥淯nderstanding Electricity Theft: Causes, Consequences, and AI-Based Detection鈥 ASEE North Central Section (NCS) Annual Conference, accepted
  11. Juric,R., Ronchieri, E., Sanfilippo, F. and Bihl, T. J. 鈥淚ntroduction to the Minitrack on Intelligent Edge Computing,鈥2025 Hawaii International Conference on System Sciences (HICSS), pp. 7247
  12. Carrizales, C., Zhang, X., and Bihl, T. J. (2025) 鈥淩einforcement Learning for Adversarial Environments,鈥 2025 Hawaii International Conference on System Sciences (HICSS), pp. 826-835
  13. Combs, K., Bihl, T. J., Howlett, S., and Adams, Y. (2025) 鈥淶ero-shot Comparison of Large Language Models (LLMs) Reasoning Abilities on Long-text Analogies,鈥 2025 Hawaii International Conference on System Sciences (HICSS) , pp. 1614-1623
  14. Combs, K., and Bihl, T. J. (2025) 鈥淭he Visual Analogs of Linguistic Concepts and Their Implications on Generative AI,鈥 2025 Hawaii International Conference on System Sciences, pp. 718-727
  15. Baeitto, A., and Bihl, T. J. (2025) 鈥淕enerative Data for Neuromorphic Computing,鈥 2025 Hawaii International Conference on System Sciences (HICSS), pp. 7248-7257
  16. Goulart, B., Bihl, T. J., and Travers, J. (2024) 鈥淭rends in Advanced Tabletop Digital DJ Media Players from 2000-2023,鈥 IEEE NAECON, Dayton, OH
  17. Alzapiedi, L., and Bihl, T. J. (2024) 鈥淭rend Analysis Through Large Language Models,鈥 IEEE NAECON, Dayton, OH
  18. Nagura, D., Bihl, T. J., Liu, J. (2024) 鈥淏oosting Race Car Performance Through Reinforcement Learning from Ai Feedback (RLAIF),鈥 IEEE NAECON, Dayton, OH
  19. Cominelli, M., Gringoli, F., Kaplan, L., Srivastava, M., Bihl, T., Blasch, E., Iyer, N., and Cerutti, F., (2024)  鈥淣euro-symbolic fusion of Wi-Fi sensing data for passive radar with inter-model knowledge transfer,鈥 IEEE FUSION, Venice, IT
  20. Kumar, D. P., Rathinam, S., Darbha, S., and Bihl, T. J. (2024)  "Heuristic for Min-Max Heterogeneous Multi-Vehicle Multi-Depot Traveling Salesman Problem," AIAA SciTech 2024 Forum
  21. Moorthy, K., Kumar, D. P., Darbha, S., Rathinam, S., and Bihl, T. J. (2024)  "Minimum-Cost Routing of two UAVs with Communication Constraints," AIAA SciTech 2024 Forum,
  22. Bihl, T. J., Farr, P., Di Caterina, G., Kirkland, P., Vicente Sola, A., Manna, D., Liu, J., and Combs, K., (2024) 鈥淓xploring Spiking Neural Networks (SNN) for Low Size, Weight, and Power (SWaP) Benefits,鈥 Hawaii International Conference on System Sciences (HICSS) , pp. 7561-7570
  23. Combs, K., Bihl, T. J., and Pennington, J.*, (2024) 鈥淚nteroperability for Autonomy,鈥 Hawaii International Conference on System Sciences (HICSS) , pp. 903-912
  24. Combs, K. and Bihl, T. J. (2024) 鈥淎 Preliminary Look at Generative AI for the Creation of Abstract Verbal-to-visual Analogies,鈥 Hawaii International Conference on System Sciences (HICSS) , pp. 1180-1189
  25. Baietto, A., Stewart, C., and Bihl, T. J. (2023) 鈥淒ataset Augmentation for Robust Spiking Neural Networks,鈥 IEEE International Conference on Autonomic Computing and Self-Organizing Systems, Toronto, Canada
  26. Manna, D.L., Vicente-Sola, A., Kirkland, P., Bihl, T.J. and Di Caterina, G.. (2023) "Frameworks for SNNs: a review of data science-oriented software and an expansion of SpykeTorch." International Conference on Engineering Applications of Neural Networks, pp. 227-238.
  27. Bihl, T.J., Cox, C., Tran, B., Morales, E., Frimel, S., Combs, K., and Arlint, A., (2023) 鈥滱irborne Resource Management Using Sensor Fusion,鈥 10th NATO Military Sensing Symposium (SET-311), London, UK
  28. Manna, D., Vicente-Sola, A., Kirkland, P. Bihl, T. J., and Di Caterina, G. (2023) 鈥淭ime Series Forecasting with Spiking Neural Networks,鈥 10th NATO Military Sensing Symposium (SET-311), London, UK
  29. Yue, Y., Batles, M., Abujahar, N., Sun, T., Smith, C.D., Bihl, T., and Liu, J., 鈥淗ybrid Spiking Neural Network Fine-tuning for Hippocampus Segmentation,鈥 IEEE International Symposium on Biomedical Imaging (ISBI), Cartagena, April 2023
  30. Bihl, T., Cox, C., Adams, Y., Pennington, J., (2023) 鈥淎utonomous Search and Rescue with Modeling and Simulation and Metrics,鈥 Hawaii International Conference on System Sciences (HICSS), pp. 1768-1777 accepted with no revision
  31. Combs, K., Bihl, T., Ganapathy, S., (2023) 鈥淚ntegration of Computer Vision with Analogical Reasoning for Characterizing Unknowns鈥 Hawaii International Conference on System Sciences (HICSS), pp. 960-969
  32. Combs, K., Bihl, T., (2023) 鈥淐lustering and Topological Data Analysis: Comparison and Application鈥 Hawaii International Conference on System Sciences (HICSS), pp. 815-824
  33. Manna, D. L., Vicente Sola, A.*, Kirkland, P., Bihl, T. J., Di Caterina, G., (2022) 鈥淔rameworks for SNNs: a review of data science-oriented software and an expansion of SpykeTorch,鈥 International Conference On Neuromorphic Systems
  34. Baietto, A., Boubin, J., Farr, P., Bihl, T. J., (2022) 鈥淟ean Neural Networks for Real-time Embedded Spectral Notching Waveform Design,鈥 IEEE 31st International Symposium on Industrial Electronics
  35. Combs, K., Bihl, T., Ganapathy, S., Staples, D., (2022) 鈥淎nalogical Reasoning: A Comparison of Algorithms for Self-Learning Natural Language Processing鈥 Hawaii International Conference on System Sciences (HICSS)
  36. Bihl, T., Jones, A., Farr, P., Straub, K., Bontempo, B., Jones, F., (2022) 鈥淎ssessing Multi-Agent Reinforcement Learning Algorithms for Autonomous Sensor Resource Management鈥 Hawaii International Conference on System Sciences (HICSS)
  37. Swize, E., Champagne, L., Cox, B., Bihl, T., (2022) 鈥淏ayesian Augmentation of Deep Learning to Improve Video Classification鈥 Hawaii International Conference on System Sciences (HICSS)
  38. Bihl, T.J., Martin, J. A., Gross, K. C., Bauer, K. W. (2021) "Data and Feature Fusion Approaches for Anomaly Detection in Polarimetric Hyperspectral Imagery"  IEEE National Aerospace and Electronics Conference (NAECON), pp 157 鈥 163
  39. Hawkes, T. D., Bihl, T. J,  (2021) "Symbols to represent AI systems" IEEE National Aerospace and Electronics Conference (NAECON), pp 61 鈥 68
  40. Bihl, T., Schoenbeck, J., Rondeau, C., Jones, A., & Adams, Y. (2021) 鈥淭uning Hyperparameters for DNA-based Discrimination of Wireless Devices.鈥 Hawaii International Conference on System Sciences (HICSS), pp. 6965-6974
  41. Hampo, M., Fan, D., Jenkins, T., DeMange, A., Westberg, S., Bihl, T. and Taha, T., 2020, July. 鈥淎ssociative Memory in Spiking Neural Network Form Implemented on Neuromorphic Hardware.鈥 International Conference on Neuromorphic Systems 2020 (pp. 1-8).
  42. Farr, P., Jones, A.M., Bihl, T., Boubin, J. and DeMange, A., (2020) 鈥淲aveform Design Implemented on Neuromorphic Hardware,鈥 IEEE International Radar Conference (RADAR), pp. 934-939
  43. Bihl, T. J., Gutierrez, R., Bauer, K. W., Boehmke, B. C., and Saie, C., (2020) 鈥淭opological Data Analysis for Enhancing Embedded  Analytics for Enterprise Cyber Log Analysis and Forensics,鈥 Hawaii International Conference on System Sciences (HICSS), Maui, HI, pp. 1937 鈥 1946.
  44. Bihl, T. J., Jones, A., Schoenbeck, J., Steeneck, D. and Jordan, J., (2020) 鈥淔inding Algorithm Settings: Easy and Efficient Hyperparameter Optimization to Address Some Artificial Intelligence 鈥渋lities鈥,鈥 Hawaii International Conference on System Sciences (HICSS), Maui, HI, pp. 943 鈥 952
  45. Bihl, T. J., and Talbert, M., (2020) 鈥淎nalytics for Autonomous C4ISR within e-Government: a Research Agenda,鈥 Hawaii International Conference on System Sciences (HICSS), pp. 2218 - 2227
  46. Boubin, J., Jones, A.M. and Bihl, T., (2019) 鈥淣eurowav: Toward real-time waveform design for vanets using neural networks,鈥 IEEE Vehicular Networking Conference (VNC), pp. 1-4
  47. John-Baptiste, P., Smith, G.E., Jones, A.M. and Bihl, T., (2019) 鈥淩apid Waveform Design Through Machine Learning,鈥 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 659-663
  48. Ramirez, J., Armitage, T., Bihl, T. and Kramer, R., (2019) 鈥淭opological Learning for Semi-Supervised Anomaly Detection in Hyperspectral Imagery鈥 IEEE National Aerospace and Electronics Conference (NAECON), pp. 560-564
  49. Bihl, T.J., Cox, C. and Machin, T., (2019) 鈥淭owards a Taxonomy of Planning for Autonomous Systems鈥 IEEE National Aerospace and Electronics Conference (NAECON), pp. 74-79
  50. Berthold, B., Bihl, T. J., Cox, C., Jenkins, T.A., and Leland, L., (2019) 鈥淧robabilistic reasoning for real-time UAV decision and control,鈥 2019 SPIE Defense and Commercial Sensing, Baltimore, MD
  51. Bihl, T. J., Jenkins, T., Cox, C., DeMange, A., Hill, K., and Zelnio, E., (2019) 鈥淔rom Lab to Internship and Back Again: Learning Autonomous Systems through Creating a Research and Development Ecosystem鈥 Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, vol. 33, pp. 9635-9643
  52. Moore, D.*, Bihl, T.J., Jenkins, T.A. and Archibald, C., (2018) 鈥淎ccommodating Plan Revisions with Multiple Agents for Local Search in Road Networks.鈥 IEEE National Aerospace and Electronics Conference (pp. 52-59), Dayton, OH.
  53. Bihl, T. J., Cox, C. and Jenkins, T. (2018) 鈥淔inding Common Ground by Unifying Autonomy Indices to Understand Needed Capabilities,鈥 2018 SPIE Defense and Commercial Sensing, Orlando, FL
  54. Bihl, T. J. and Steeneck, D. W. (2018) 鈥淢ultivariate Stochastic Approximation to Tune Neural Network Hyperparameters for Critical Infrastructure Communication Device Identification,鈥 2018 Hawaii International Conference on System Sciences (HICSS), pp. 2225-2234
  55. Bihl, T. J. and Hajjar, S. (2017) 鈥淓lectricity Theft Concerns within Advanced Energy Technologies,鈥 2017 IEEE National Aerospace and Electronics Conference (NAECON),  Dayton, OH
  56. Steeneck, D. W. and Bihl, T. J., (2017) 鈥淪tochastic Approximation for Learning Rate Optimization for Generalized Relevance Learning Vector Quantization,鈥 2017 IEEE National Aerospace and Electronics Conference (NAECON), Dayton, OH
  57. Bihl, T. J., Temple, M. A., Bauer, K.W., (2017) 鈥淎n Optimization Framework for Generalized Relevance Learning Vector Quantization with Application to Z-Wave Device Fingerprinting,鈥 2017 Hawaii International Conference on System Sciences (HICSS), pp. 360 鈥 365
  58. Hawkes, T., Bihl, T. J., and Rogers, S., (2016), 鈥淧oster: Qualia Exploitation of Sensing Technology (QuEST) for Vehicular Network Optimization,鈥 2016 IEEE Vehicular Networking Conference (VNC), pp. 1-2
  59. Bihl, T. J., Temple, M. A., and Bauer, K.W., (2016) 鈥淔eature Selection Fusion (FSF) for Aggregating Relevance Ranking Information with Application to ZigBee Radio Frequency Device Identification,鈥 2016 IEEE National Aerospace and Electronics Conference (NAECON),  Dayton, OH, pp. 80-87
  60. Hawkes, T. D., Bihl, T. J., and Woolacott, M. H. (2016) "Interacting Systems Approach to Investigation of Human Cognitive Capacity," 3rd Annual Cincinnati-Dayton INFORMS Conference, Dayton, OH, pp. 32-39
  61. Bihl, T. J., Temple, M. A., Bauer, K.W., and Ramsey, B., (2015) 鈥淒imensional Reduction Analysis for Physical Layer Device Fingerprints with Application to ZigBee and Z-Wave Devices,鈥 IEEE Military Communications Conference (MILCOM), Tampa, FL, pp. 360-365
  62. Carbino, T. J., Temple, M. A., and Bihl, T. J., (2015) 鈥淓thernet Card Discrimination Using Unintentional Cable Emissions and Constellation-Based Fingerprinting,鈥 International Conference on Computing, Networking and Communications (ICNC), Anaheim, CA, pp. 369-373
  63. Ward, M. R., Bihl, T. J., Bauer, K. W., (2014) 鈥淰ibrometry-based vehicle identification framework using nonlinear autoregressive neural networks and decision fusion,鈥 IEEE National Aerospace and Electronics Conference (NAECON),  Dayton, OH, pp. 180-185
  64. Bihl, T. J., Mitchell, J.R., and Irwin, R. D., (2013) 鈥淗ybrid System Identification for MIMO Control-System Design,鈥 19th IFAC (International Federation of Automatic Control) Symposium on Automatic Control in Aerospace, W眉rzburg, Germany, pp. 411-416
  65. Ryer, D.M., Bihl, T.J., Bauer, K.W., and Rogers, S.K., (2011) 鈥淨UEST Hierarchy for Hyperspectral Face Recognition,鈥 SPIE Symposium on Defense & Security Symposium, Orlando, FL, pp. 1-9
  66. Mindrup, F., Bihl, T.J., and Bauer, K., (2010) "Modeling Noise in a Framework to Optimize the Detection of Anomalies in Hyperspectral Imaging," Intelligent Engineering Systems Through Artificial Neural Networks, St. Louis, MO, V20, pp. 517-524  
  67. Williams, J., Bihl, T.J., and Bauer, K., (2010) "Mitigation of Correlation and Heterogeneity Effects in Hyperspectral Data," Intelligent Engineering Systems Through Artificial Neural Networks, V20, St. Louis, MO, pp. 501-507
  68. Bihl, T.J., Heidenreich, J., Allen, D., and Hunt, K., (2009) 鈥淪PECTTRA:  A Space Power System Modeling and Simulation Tool,鈥 AIAA 7th International Energy Conversion Engineering Conference, Denver, CO, pp. 1-14
  69. Bihl, T.J., Pham, K.D., and Murphey, T.W., (2007) 鈥淢odeling and Control of Active Gravity Off-Loading for Deployable Space Structures,鈥 SPIE Symposium on Defense & Security Symposium, Orlando, FL, pp. 1-10
  70. Bihl, T.J., Manning, W.J., Mitchell, J.R., and Bukley, A.P., (2007) 鈥淐ontroller Development and Embedded Controller Implementation for Active Gravity Off-Loading of Deployable Space Structures,鈥 30th Annual AAS Guidance and Control Conference,  Breckenridge, CO, pp. 1-9